Time period $T\,\propto \,{P^a}\,{d^b}\,{E^c}$  then value of $c$ is  given $p$ is pressure, $d$ is density and $E$ is energy

  • A

    $ - \frac{5}{6}$

  • B

    $\frac{1}{2}$

  • C

    $\frac{1}{3}$

  • D

    $1$

Similar Questions

The equation of a circle is given by $x^2+y^2=a^2$, where $a$ is the radius. If the equation is modified to change the origin other than $(0,0)$, then find out the correct dimensions of $A$ and $B$ in a new equation: $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$.The dimensions of $t$ is given as $\left[ T ^{-1}\right]$.

  • [JEE MAIN 2023]

Young-Laplace law states that the excess pressure inside a soap bubble of radius $R$ is given by $\Delta P=4 \sigma / R$, where $\sigma$ is the coefficient of surface tension of the soap. The EOTVOS number $E_0$ is a dimensionless number that is used to describe the shape of bubbles rising through a surrounding fluid. It is a combination of $g$, the acceleration due to gravity $\rho$ the density of the surrounding fluid $\sigma$ and a characteristic length scale $L$ which could be the radius of the bubble. A possible expression for $E_0$ is 

  • [KVPY 2013]

What is the dimensional formula of $a b^{-1}$ in the equation $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$, where letters have their usual meaning.

  • [JEE MAIN 2024]

Given that $K =$ energy, $V =$ velocity, $T =$ time. If they are chosen as the fundamental units, then what is dimensional formula for surface tension?

According to Newton, the viscous force acting between liquid layers of area $A$ and velocity gradient $\Delta v/\Delta z$ is given by $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ where $\eta $ is constant called coefficient of viscosity. The dimension of $\eta $ are

  • [AIPMT 1990]